Solving Nonlinear Equations Systems with an Enhanced Reinforcement Learning Based Differential Evolution

نویسندگان

چکیده

Nonlinear equations systems (NESs) arise in a wide range of domains. Solving NESs requires the algorithm to locate multiple roots simultaneously. To deal with efficiently, this study presents an enhanced reinforcement learning based differential evolution following major characteristics: (1) design state function uses information on fitness alternation action; (2) different neighborhood sizes and mutation strategies are combined as optional actions; (3) unbalanced assignment method is adopted change reward value select optimal actions. evaluate performance our approach, 30 test problems 18 instances features selected suite. The experimental results indicate that proposed approach can improve solving NESs, outperform several state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Integrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems

‎Here‎, ‎we give a two phases algorithm based on integrating differential evolution (DE) algorithm with modified hybrid genetic algorithm (MHGA) for solving the associated nonlinear programming problem of a nonlinear optimal control problem‎. ‎In the first phase‎, ‎DE starts with a completely random initial population where each individual‎, ‎or solution‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex system modeling and simulation

سال: 2022

ISSN: ['2096-9929']

DOI: https://doi.org/10.23919/csms.2022.0003